Address Watchpoints

Instrument data, not code.

Peter Goodman, Ashvin Goel

Advanced Host-Level Security (AHLS)
May 14, 2014



Goals of Project

e Goal is to protect operating system kernels

e Protect kernel against module code

o Buggy modules
m EXxpose kernel to attack
m Need to detect disallowed behavior

o Malicious modules (rootkits)
m Often installed using social engineering
m Have complete access to kernel code and data
m Need to detect anomalous behavior

e Requires understanding module behavior
o What they do, what they should be allowed to do



Approach

e Instrument all module code at runtime using
Dynamic Binary Translation (DBT)

O

O O O O

Rewrite module code on-the-fly during execution
No source code or debug information required
Operates at instruction / basic block granularity
Complete control over a module's execution
Built a prototype system called Granary

m Think "Valgrind", but for the Linux kernel

e Two key ideas to securing modules
o Interpose on module/kernel interface with wrappers
o Verify memory accesses with watchpoints



Why DBT is- SCARY Doesn't Always
Fit the Problem

e [o00 low level

o Hard to write instrumentation that is both safe and
efficient for injection into module code
m Often have to special-case tricky instructions
m Need to worry about re-entrancy
m Must maintain illusion that DBT system not there

e \Wrong abstraction

o |In practice, don't care about instructions being
executed, care about what/how data is accessed
o E.g. data race detector, memory access bugs
e Binary means binary
o All code instrumented or not... always in the same way



We Want Data-Centric
Instrumentation

Types of applications that we want to make, but
are hard to do with run of the mill DBT systems:

Buffer overflow detectors

Use-after-free, read-before-write, double-
free, etc

Selective shadow memory
Object-specific invariant checking
Memory leak detector

Accurate working set estimation

Access pattern detector / recorder



Ideally, we want

1. You tell the hardware what objects
your tool cares about

2. The hardware tells your tool when
the memory of those objects is
accessed



Current Solutions

e Hardware watchpoints
o Too scarce to be useful at a large scale

e Hardware protection domains
o Only available on specialized hardware

e Page protection
o Too coarse-grained

e Shadow memory

o "All or nothing", even memory you don't care about
needs to be shadowed



Key Insight

e Hard to track objects, easy to track
addresses!

o Taint object addresses so that accesses to
"interesting"” objects always raise a fault.
m "Address watchpoints”

o Relies on x86-64 48-bit address implementation in
which 16 bits are "free" to be changed.

o Kind of like getting a segfault when you read a bad
pointer.
e Interpose on fault when object is accessed.

o Use the tainted bits to identify i) what object is
accessed, and ii) what do about it.



Example (1)

struct sk buff *skb = alloc skb(skb size,
GFP_KERNEL);

dma _map single(..., skb->data, skb->len,
DMA TO DEVICE);



Example (2)

struct sk buff *skb = alloc skb(skb size,
GFP_KERNEL);

skb = add_watchpoint(skb, <meta-data>);

dma _map single(..., skb->data, skb->len,
DMA TO DEVICE);



10

Example (3)

struct sk buff *skb = alloc skb(skb size,
GFP_KERNEL);

skb == OxXFFFFFFFFA©92600
skb = add_watchpoint(skb, <meta-data>);

dma _map single(..., skb->data, skb->len,
DMA TO DEVICE);



11

Example (4)

struct sk buff *skb = alloc skb(skb size,
GFP_KERNEL);

skb == OXFFFFFFFFA092600

skb = add watchpoint(skb, <meta-data>);

skb == Ox7654FFFFA092600

dma _map single(..., skb->data, skb->len,
DMA TO DEVICE);



12

Example (5)

struct sk buff *skb = alloc skb(skb size,
GFP_KERNEL);

skb == OXFFFFFFFFA092600

skb = add _watchpoint(skb, );

skb == Ox7654FFFFA092600

>

dma _map single(..., skb->data, skb->len,
DMA TO DEVICE);



13

Example (6)

struct sk buff *skb = alloc skb(skb size,
GFP_KERNEL);

skb == OXFFFFFFFFA©92600

skb = add watchpoint(skb, <meta-data>);

skb == Ox7654FFFFA092600

>

dma_map single(.==. skb->data, ->len,
DMA TO BEVICE);



Example (7)

struct sk buff *skb = alloc skb(skb size,
GFP_KERNEL);

skb == OXFFFFFFFFA©92600

skb = add watchpoint(skb, <meta-data>);

skb == Ox7654FFFFA092600

>

dma_map single(.==. skb->data, ->len,
MA_TO BEVICE);

do_general protection (GP fault handler)

. regs->regs[...] == Ox7654FFFFAQ926E0

14



Challenges of Address Watchpoints

e Efficiency
o Faults are expensive, how can we minimize them?

e Correctness

o Need to temporarily "untaint” and then re-taint

address to get control back.
o Handle user addresses, physical addresses.

e Usage
o When and how to insert calls to add watchpoint?

15



Efficiency

e Strawman approach
o Take fault on each watched address, very expensive

e Existing DBT approaches

o Instrument all code, dispatch callback on watched
address, avoids faults, but still expensive

e Address watchpoint approach
O Take fault on first access to watched address

o Turn on DBT, and then turn it off when watched
addresses are not expected to be accessed

m [ake advantage of locality of accesses to provide
efficiency

16



Correctness

e User addresses

o Detect user addresses by using the kernel's
"exception table" mechanism

o Interesting benefit: can detect uses of user

addresses that do not use the special
copy _to _user /copy_ from_ user functions

e Physical addresses
o Need to special case
m Virtual-to-physical address translation
m Things that hash virtual address
o Open problem

m Lose taint when going virt -> phys -> virt.

17



18

Usage

e \When should you add an address

watchpoint, and how do you do it?

o ldentify "sources" of objects, e.g.. type-specific
allocators, calls to generic allocators.

o Interpose and replace allocated address with a
watched address.

o Attach meta-data to the watched address, every time
the tainted address or an address derived from it is
accessed, we can get the meta-data back!

o Create a callback function that operates on a
watched address and its meta-data.



Implemented Address Watchpoints

Implemented address watchpoints [HotDep'13]
using Granary DBT system.

Made some applications:

e Buffer overflow detector
o Use-after-free, read-before-write
e Memory leak detector

19



20

Still, Things Weren't Perfect

e Hard to implement the address watchpoints
Instrumentation
o Granary didn't have the "right" interface for easily
getting at the data being accessed

o Had to special case some instructions
o Poor user space support

o Long-standing bug went undetected
e Infrastructure useful beyond watchpoints
o Undergrad wanted to make shadow memory system,
duplicated most of watchpoints code because the

hard part of the memory access instrumentation was
"done"



To The Future, And Beyond!

e Address watchpoints gives us data
selectivity; we also want code selectivity:

o Binary still means binary: watchpoint "fires" or it
doesn't, regardless of where memory is accessed
o Want context-specific firing
m E.g. fire only when access inside critical section

e Better infrastructure
o Throw away the prototype (Granary)
m Started work on Granary+ in January 2014
o Flexible "virtual registers” system
m Makes all kinds of instrumentation easier™
m Key success factor of PIN, Valgrind

)
i~
§
g
A ]
.h'
{ |
‘o



THAT'S THE TALK




