
Address Watchpoints
Instrument data, not code.

Peter Goodman, Ashvin Goel

Advanced Host-Level Security (AHLS)
May 14, 2014

Goals of Project

● Goal is to protect operating system kernels

● Protect kernel against module code
○ Buggy modules

■ Expose kernel to attack
■ Need to detect disallowed behavior

○ Malicious modules (rootkits)
■ Often installed using social engineering
■ Have complete access to kernel code and data
■ Need to detect anomalous behavior

● Requires understanding module behavior
○ What they do, what they should be allowed to do

1

Approach

● Instrument all module code at runtime using
Dynamic Binary Translation (DBT)
○ Rewrite module code on-the-fly during execution
○ No source code or debug information required
○ Operates at instruction / basic block granularity
○ Complete control over a module's execution
○ Built a prototype system called Granary

■ Think "Valgrind", but for the Linux kernel

● Two key ideas to securing modules
○ Interpose on module/kernel interface with wrappers
○ Verify memory accesses with watchpoints

2

Why DBT is SCARY Doesn't Always
Fit the Problem

● Too low level
○ Hard to write instrumentation that is both safe and

efficient for injection into module code
■ Often have to special-case tricky instructions
■ Need to worry about re-entrancy
■ Must maintain illusion that DBT system not there

● Wrong abstraction
○ In practice, don't care about instructions being

executed, care about what/how data is accessed
○ E.g. data race detector, memory access bugs

● Binary means binary
○ All code instrumented or not... always in the same way

3

We Want Data-Centric
Instrumentation

Types of applications that we want to make, but
are hard to do with run of the mill DBT systems:
● Buffer overflow detectors
● Use-after-free, read-before-write, double-

free, etc
● Selective shadow memory
● Object-specific invariant checking
● Memory leak detector
● Accurate working set estimation
● Access pattern detector / recorder

4

Ideally, we want

1. You tell the hardware what objects
your tool cares about

2. The hardware tells your tool when
the memory of those objects is
accessed

5

Current Solutions

● Hardware watchpoints
○ Too scarce to be useful at a large scale

● Hardware protection domains
○ Only available on specialized hardware

● Page protection
○ Too coarse-grained

● Shadow memory
○ "All or nothing", even memory you don't care about

needs to be shadowed

6

Key Insight

● Hard to track objects, easy to track
addresses!
○ Taint object addresses so that accesses to

"interesting" objects always raise a fault.
■ "Address watchpoints"

○ Relies on x86-64 48-bit address implementation in
which 16 bits are "free" to be changed.

○ Kind of like getting a segfault when you read a bad
pointer.

● Interpose on fault when object is accessed.
○ Use the tainted bits to identify i) what object is

accessed, and ii) what do about it.

7

Example (1)

struct sk_buff *skb = alloc_skb(skb_size,

 GFP_KERNEL);

...

dma_map_single(..., skb->data, skb->len,

 DMA_TO_DEVICE);

8

Example (2)

struct sk_buff *skb = alloc_skb(skb_size,

 GFP_KERNEL);

skb = add_watchpoint(skb, <meta-data>);

...

dma_map_single(..., skb->data, skb->len,

 DMA_TO_DEVICE);

9

Example (3)

struct sk_buff *skb = alloc_skb(skb_size,

 GFP_KERNEL);

skb == 0xFFFFFFFFA092600

skb = add_watchpoint(skb, <meta-data>);

...

dma_map_single(..., skb->data, skb->len,

 DMA_TO_DEVICE);

10

Example (4)

struct sk_buff *skb = alloc_skb(skb_size,

 GFP_KERNEL);

skb == 0xFFFFFFFFA092600

skb = add_watchpoint(skb, <meta-data>);

skb == 0x7654FFFFA092600

...

dma_map_single(..., skb->data, skb->len,

 DMA_TO_DEVICE);

11

Example (5)

struct sk_buff *skb = alloc_skb(skb_size,

 GFP_KERNEL);

skb == 0xFFFFFFFFA092600

skb = add_watchpoint(skb, <meta-data>);

skb == 0x7654FFFFA092600

...

dma_map_single(..., skb->data, skb->len,

 DMA_TO_DEVICE);

...

<meta-data>

...

12

Example (6)

struct sk_buff *skb = alloc_skb(skb_size,

 GFP_KERNEL);

skb == 0xFFFFFFFFA092600

skb = add_watchpoint(skb, <meta-data>);

skb == 0x7654FFFFA092600

...

dma_map_single(..., skb->data, skb->len,

 DMA_TO_DEVICE);

...

<meta-data>

...

13

Example (7)

struct sk_buff *skb = alloc_skb(skb_size,

 GFP_KERNEL);

skb == 0xFFFFFFFFA092600

skb = add_watchpoint(skb, <meta-data>);

skb == 0x7654FFFFA092600

...

dma_map_single(..., skb->data, skb->len,

 DMA_TO_DEVICE);

do_general_protection (GP fault handler)

... regs->regs[...] == 0x7654FFFFA0926E0

...

<meta-data>

...

14

Challenges of Address Watchpoints

● Efficiency
○ Faults are expensive, how can we minimize them?

● Correctness
○ Need to temporarily "untaint" and then re-taint

address to get control back.
○ Handle user addresses, physical addresses.

● Usage
○ When and how to insert calls to add_watchpoint?

15

Efficiency

● Strawman approach
○ Take fault on each watched address, very expensive

● Existing DBT approaches
○ Instrument all code, dispatch callback on watched

address, avoids faults, but still expensive
● Address watchpoint approach

○ Take fault on first access to watched address
○ Turn on DBT, and then turn it off when watched

addresses are not expected to be accessed
■ Take advantage of locality of accesses to provide

efficiency

16

Correctness

● User addresses
○ Detect user addresses by using the kernel's

"exception table" mechanism
○ Interesting benefit: can detect uses of user

addresses that do not use the special
copy_to_user / copy_from_user functions

● Physical addresses
○ Need to special case

■ Virtual-to-physical address translation
■ Things that hash virtual address

○ Open problem
■ Lose taint when going virt -> phys -> virt.

17

● When should you add an address
watchpoint, and how do you do it?
○ Identify "sources" of objects, e.g.. type-specific

allocators, calls to generic allocators.
○ Interpose and replace allocated address with a

watched address.
○ Attach meta-data to the watched address, every time

the tainted address or an address derived from it is
accessed, we can get the meta-data back!

○ Create a callback function that operates on a
watched address and its meta-data.

Usage

18

Implemented Address Watchpoints

Implemented address watchpoints [HotDep'13]
using Granary DBT system.

Made some applications:
● Buffer overflow detector
● Use-after-free, read-before-write
● Memory leak detector

19

Still, Things Weren't Perfect

● Hard to implement the address watchpoints
instrumentation
○ Granary didn't have the "right" interface for easily

getting at the data being accessed
○ Had to special case some instructions
○ Poor user space support
○ Long-standing bug went undetected

● Infrastructure useful beyond watchpoints
○ Undergrad wanted to make shadow memory system,

duplicated most of watchpoints code because the
hard part of the memory access instrumentation was
"done"

20

To The Future, And Beyond!

● Address watchpoints gives us data
selectivity; we also want code selectivity:
○ Binary still means binary: watchpoint "fires" or it

doesn't, regardless of where memory is accessed
○ Want context-specific firing

■ E.g. fire only when access inside critical section
● Better infrastructure

○ Throw away the prototype (Granary)
■ Started work on Granary+ in January 2014

○ Flexible "virtual registers" system
■ Makes all kinds of instrumentation easierTM

■ Key success factor of PIN, Valgrind

21

